The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins.

نویسندگان

  • T T Tseng
  • K S Gratwick
  • J Kollman
  • D Park
  • D H Nies
  • A Goffeau
  • M H Saier
چکیده

A previous report identified and classified a small family of gram-negative bacterial drug and heavy metal efflux permeases, now commonly referred to as the RND family (TC no. 2.6). We here show that this family is actually a ubiquitous superfamily with representation in all major kingdoms. We report phylogenetic analyses that define seven families within the RND superfamily as follows: (1) the heavy metal efflux (HME) family (gram negative bacteria), (2) the hydrophobe/amphiphile efflux-1 (HAE1) family (gram negative bacteria), (3) the nodulation factor exporter (NFE) family (gram negative bacteria), (4) the SecDF protein-secretion accessory protein (SecDF) family (gram negative and gram positive bacteria as well as archaea), (5) the hydrophobe/amphiphile efflux-2 (HAE2) family (gram positive bacteria), (6) the eukaryotic sterol homeostasis (ESH) family, and (7) the hydrophobe/amphiphile efflux-3 (HAE3) family (archaea and spirochetes). Functionally uncharacterized proteins were identified that are members of the RND superfamily but fall outside of these seven families. Some of the eukaryotic homologues function as enzymes and receptors instead of (or in addition to) transporters. The sizes and topological patterns exhibited by members of all seven families are shown to be strikingly similar, and statistical analyses establish common descent. Multiple alignments of proteins within each family allow derivation of family-specific signature sequences. Structural, functional, mechanistic and evolutionary implication of the reported results are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary mix-and-match with MFS transporters.

Major facilitator superfamily (MFS) transport proteins are ubiquitous in the membranes of all living cells, and ∼25% of prokaryotic membrane transport proteins belong to this superfamily. The MFS represents the largest and most diverse group of transporters and includes members that are clinically important. A wide range of substrates is transported in many instances actively by transduction of...

متن کامل

Regulation of Na+-independent Cl-/HCO3- exchangers by pH.

Among human bicarbonate transporters, two major gene families encode Na-independent Cl(-)/HCO(3)(-) exchangers: the SLC4 anion exchanger (AE) family, and the SLC26 "sulfate permease" anion transporter family. The SLC4 AE family contains at least three genes, and comprises a subfamily within the larger and phylogenetically more ancient bicarbonate transporter superfamily that includes the Na bic...

متن کامل

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins

Resistance-nodulation-division (RND) efflux systems are ubiquitous transporters in Gram-negative bacteria that are essential for antibiotic resistance. The RND efflux systems also contribute to diverse phenotypes independent of antimicrobial resistance, but the mechanism by which they affect most of these phenotypes is unclear. This is the case in Vibrio cholerae where the RND systems function ...

متن کامل

Glutathione S- transferases and their function as a protein superfamily in plants

Glutathione s transferase (GST) is one of the largest protein and multigene families present in all plant species and other living organisms. For these proteins, which are highly ‌inducible to stress and internal and external stimuli, several functions in plants have been identified, including implication in secondary metabolism, growth and development, detoxification of herbicides, coping with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular microbiology and biotechnology

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 1999